### 1.1 Angles, Degrees \& Triangles

Need To Know

- Vocabulary
- Formulas
- Special Triangles


## Degree

- Right Angle
- Straight Angle
- Acute Angle
- Obtuse Angle

Angle Relationships

- Complementary Angles
- Supplementary Angles


## Formulas

1. Area of a Triangle
2. Angle sum of a triangle
3. Pythagorean Theorem

## Special Triangles

Two special triangles will make the basis of much of what you have to memorize.
Study hard on this topic.

1. $30-60-90$ Triangle
2. 45-45-90 Triangle

## Solve the triangles




### 1.2 Rectangular Coordinates Sys.

Need To Know

- Vocabulary
- Formula
- Angles in the rectangular coordinate system
Set
- Descartes, Cartesian Plane, Calculus and the development of science.


## Vocabulary

## Coordinate System

Origin, $x$-axis, $y$-axis
Quadrants I, II, III, IV
Plotting points
Graphs of lines

$$
\begin{aligned}
& y=2 x+3 \\
& 3 x-2 y=6
\end{aligned}
$$

## Formula

Circle formula

Examples:
$x^{2}+y^{2}=36$
$x^{2}+y^{2}=5$

Distance formula for 2 points $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$

Example:
Find the distance between $(-8,9)$ and $(-3,-2)$

Angle in standard position -
$\theta \in \mathrm{QI}$
Quadrantal Angle -
Coterminal Angles -

Is $\alpha$ in standard position?
Are the others in standard position?
Are $\beta \& \gamma$ coterminal?
Which angles are coterminal?
True/False:
$\theta \in$ QII
True/False:
$\beta \in$ QII
Fill in:
$\gamma \in$ $\qquad$


Find all angles that are coterminal to $120^{\circ}$


Need To Know

- Definitions of 6 Trigonometric Functions
- Sign patterns of each function
- How to solve with them


## Definitions of Trig Functions

For $\theta$ in standard position with its terminal side going through the point ( $\mathrm{x}, \mathrm{y}$ ) and $r=\sqrt{x^{2}+y^{2}}$ :

| Function Name | Abbreviation | Definition |
| :--- | :--- | :--- |
| The sine of $\theta$ | $\sin \theta$ |  |
| The cosine of $\theta$ | $\cos \theta$ |  |
| The tangent of $\theta$ | $\tan \theta$ |  |
| The cotangent of $\theta$ | $\cot \theta$ |  |
| The secant of $\theta$ | $\sec \theta$ |  |
| The cosecant of $\theta$ | $\csc \theta$ |  |

## Definitions of Trig Functions

Example:
Find all 6 trig functions of $\theta$ at the vertex with the terminal side through the point ( $-4,-2$ )


## Practice

Find sine, cosine and tangent of $\theta=135^{\circ}$


## Sign Patterns of Trig Functions

What are the signs of each function in any particular quadrant?

| For $\theta$ in quad. | I | II | III | IV |
| :--- | :---: | :---: | :---: | :---: |
| $\sin \theta$ |  |  |  |  |
| $\cos \theta$ |  |  |  |  |
| $\tan \theta$ |  |  |  |  |

In which quadrant does the terminal side lie?

$$
\begin{aligned}
& \sin \theta=+ \\
& \cos \theta=- \\
& \tan \theta=- \\
& \sin \theta=- \text { and } \tan \theta=+
\end{aligned}
$$

## Practice

Find all 6 trig functions of $\theta$ when $\csc \theta=13 / 5$ and $\cos \theta<0$.
end

### 1.4 Introductions to Identities

Need To Know

- Reciprocal Identities
- Ratio Identities
- Pythagorean Identities


## Reciprocal Identities

Prove:

> Practice:
> If $\cos \theta=\sqrt{3} / 2, \sec \theta=$
> If $\csc \theta=-13 / 12, \sin \theta=$

Prove:

Practice:
If $\sin \theta=2 / \sqrt{13}, \cos \theta=3 / \sqrt{13}$,
find $\cot \theta$.

## Pythagorean Identity

Given: $x^{2}+y^{2}=r^{2}$

If $\cos \theta=\frac{-1}{\sqrt{10}}$, and $\theta \in \mathrm{QIII}$,
find all other trig functions of $\theta$.

## Practice

If $\csc \theta=2$ and $\cos \theta=$ negative, then
find the other trig functions.

### 1.5 More About Identities

Need To Know

- Recall Basic Identities
- Transformations
- by simple equivalency
- by algebraic manipulation
- Transformation Tips


## | MEMORIZE - Basic Identities

Reciprocal
$\sec \theta=\frac{1}{\cos \theta}$
$\csc \theta=\frac{1}{\sin \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
Ratio
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cos ^{2} \theta+\sin ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\cot ^{2} \theta+1=\csc ^{2} \theta$

## Transformations

Write each in terms of cosine only.
$\cot \theta$

Algebra is another way to transform an expression

$$
\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}
$$

Try your own algebraic transformation
$\frac{1}{\sin \theta}-\frac{1}{\cos \theta}$

## Transformations

In addition to adding and subtraction you can multiply an expression to get rid of parentheses.

$$
(\cos \theta+2)(\cos \theta-5)
$$

$(\sin \theta-3)^{2}$

$$
(1-\cot \theta)(1+\cot \theta)
$$

Simplify the expression as much as possible by substituting $8 \sec (\theta)$ for $x$ in: $\sqrt{x^{2}-64}$

## Transformations Tips

1. Start with the side that appears the most complex
2. Substitute sine and cosine identities and simplify
3. Add, subtract or multiply and simplify
4. Work on the left side and then work on the right side until both expressions change into a common result

Show: $\frac{\csc \theta}{\cot \theta}=\sec \theta$

Show: $\sec \theta \cot \theta-\sin \theta=\frac{\cos ^{2} \theta}{\sin \theta}$

