1.1 Angles, Degrees & Triangles

Need To Know

- VocabularyFormulas
- Special Triangles

Degree

Types of Angles

- Right Angle
- Straight Angle
- Acute Angle
- Obtuse Angle

Angle Relationships

- Complementary Angles
- Supplementary Angles

- 2. Angle sum of a triangle
- 3. Pythagorean Theorem

Two special triangles will make the basis of much of what you have to memorize.Study hard on this topic.

- 1. 30 60 90 Triangle
- 2. 45 45 90 Triangle

4

В

č

Δ

end

1.2 Rectangular Coordinates Sys.

Need To Know

- Vocabulary
- Formula
- Angles in the rectangular coordinate system

<u>Set</u>

 Descartes, Cartesian Plane, Calculus and the development of science.

<u>Coordinate System</u> Origin, x-axis, y-axis Quadrants I, II, III, IV Plotting points

Graphs of lines y = 2x + 33x - 2y = 6

Examples: $x^2 + y^2 = 36$

 $x^2 + y^2 = 5$

Distance formula for 2 points $(x_1, y_1) \& (x_2, y_2)$

Example: Find the distance between (-8, 9) and (-3, -2)

Vocabulary <u>Angle in standard position</u> –

 $\theta \in QI$

Quadrantal Angle -

Coterminal Angles -

1.3 Definitions of Trig Function

Need To Know

- Definitions of 6 Trigonometric Functions
- Sign patterns of each function
- How to solve with them

Definitions of Trig Functions

For θ in standard position with its terminal side going through the point (x, y) and $r = \sqrt{x^2 + y^2}$:

Function Name	Abbreviation	Definition
The sine of $\boldsymbol{\theta}$	sin θ	
The cosine of $\boldsymbol{\theta}$	$\cos \theta$	
The tangent of θ	tan θ	
The cotangent of θ	cot θ	
The secant of $\boldsymbol{\theta}$	sec θ	
The cosecant of $\boldsymbol{\theta}$	csc θ	

Definitions of Trig Functions

Example:

Find all 6 trig functions of θ at the vertex with the terminal side through the point (-4, -2)

Sign Patterns of Trig Functions

What are the signs of each function in any particular quadrant?

For θ in quad.	I	II	III	IV
sin θ				
$\cos \theta$				
tan θ				

In which quadrant does the terminal side lie?

 $\sin \theta = +$

 $\cos \theta = -$

 $\tan \theta = -$

 $\sin\theta$ = - and $\tan\theta$ = +

Find all 6 trig functions of θ when csc θ = 13/5 and cos θ < 0.

end

- Reciprocal Identities
- Ratio Identities
- Pythagorean Identities

Prove:

Practice:
If
$$\cos \theta = \frac{\sqrt{3}}{2}$$
, $\sec \theta =$
If $\csc \theta = \frac{-13}{12}$, $\sin \theta =$

Prove:

Practice: If sin $\theta = \frac{2}{\sqrt{13}}$, cos $\theta = \frac{3}{\sqrt{13}}$, find cot θ .

If $\csc \theta = 2$ and $\cos \theta =$ negative, then

find the other trig functions.

1.5 More About Identities

end

Need To Know

Transformations

- by simple equivalency
- by algebraic manipulation
- Transformation Tips

MEMORIZE - Basic IdentitiesReciprocalRatioPythagorean $\sec \theta = \frac{1}{\cos \theta}$ $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cos^2 \theta + \sin^2 \theta = 1$ $\csc \theta = \frac{1}{\sin \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$ $1 + \tan^2 \theta = \sec^2 \theta$

$$\cot\theta = \frac{1}{\tan\theta} \qquad \qquad \cot^2\theta + 1 = \csc^2\theta$$

Write each in terms of cosine only.

sec θ $\cot \theta$

 $\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}$

Transformations

In addition to adding and subtraction you can multiply an expression to get rid of parentheses.

 $(\cos\theta + 2)(\cos\theta - 5)$

 $(\sin\theta - 3)^2$

 $(1 - \cot\theta)(1 + \cot\theta)$

Simplify the expression as much as possible by substituting 8sec(θ) for x in: $\sqrt{x^2-64}$

- 1. Start with the side that appears the most complex
- 2. Substitute sine and cosine identities and simplify
- 3. Add, subtract or multiply and simplify
- 4. Work on the left side and then work on the right side until both expressions change into a common result

Show:
$$\frac{\csc\theta}{\cot\theta} = \sec\theta$$

end